
 1

Implementation of a

real-time voice
encryption system

Markus Albert Brandau

Master Thesis
Universitat Politècnica

de Catalunya
EUETIT

Autor: Markus Brandau
Tutor: Ignasi Esquerra Llucià

Feb. 2008

 2

Fachhochschule Köln
University of Applied Sciences Cologne

07 Fakultät für Informations-, Medien- und Elektrotechnik,

Studiengang Technische Informatik/

Information Engineering

Institut für Nachrichtentechnik

Labor für Technische Akustik

Master Thesis

Thema: Implementation of a real-time voice encryption system

Student : Markus Brandau

Matrikelnummer: 11031393

Referent : Prof. Dr.- Ing. Pörschmann

Korreferent : Prof. Dr.- Ing. Elders- Boll

Abgabedatum : 13. Feb. 2008

Hiermit versichere ich, dass ich die Diplomarbeit selbständig angefertigt und keine
anderen als die angegebenen und bei Zitaten kenntlich gemachten Quellen und
Hilfsmittel benutzt habe.

 Markus Albert Brandau

Abstract

 4

Abstract

In this master thesis, a voice encryption system was programmed as a real-time

software application. The idea was based on a previous graduation thesis and is

meant to show an example of the possibilities of signal processing for educational

use. The application uses a frequency scrambling technique on an audio signal taken

from the computer microphone input and plays it scrambled back to the speakers, or

other way around to descramble the signal. The basic idea is to use a frequency

channel decomposition through digital signal filtering and down-sampling.

Reassembling these sub-bands in a different order, a scrambled voice signal is the

result. In addition, the scrambling process is embedded into a “software framework”

which allows the use of an audio data stream from and to a sound card through

different APIs so a computer platform real-time application can be accomplished.

Table of Contents

 5

Table of Contents

Abstract .. 4

List of abbreviations.. 7

1 Introduction to Voice Security.. 8

1.1 History .. 9

1.2 The Human Voice... 12

1.3 Techniques of Voice Security ... 15

1.3.1 Scrambling .. 15

1.3.2 Encryption ... 19

2 Project Overview ... 22

3 The voice scrambling system .. 27

3.1 Encoder.. 27

3.1.1 Frequency separation ... 28

3.1.2 Scrambling .. 31

3.1.3 Frequency reassembling... 33

3.2 Decoder.. 36

4 Audio access ... 37

4.1 WAV Files .. 37

4.2 System Audio APIs... 38

4.3 Software Audio API .. 43

5 Project implementation .. 46

5.1 Overview .. 46

5.2 Duplex communication ... 47

5.3 Main method and use of PortAudio .. 48

5.4 Manipulation... 52

5.4.1 Cut/ build method .. 53

Table of Contents

 6

5.4.2 Scrambling method ... 55

5.4.3 Filter .. 55

6 Performance.. 63

6.1 Prove of scrambling.. 63

6.2 Time Performance.. 66

6.3 Cryptanalysis.. 68

7 Conclusion... 70

7.1 Future Work ... 70

8 References .. 71

List of figures .. 73

List of tables ... 75

Appendix A ... 76

Appendix B ... 77

List of abbreviations

 7

List of abbreviations

ADPCM Adaptive Differential Pulse Code Modulation
AES Advanced Encryption System
ALSA Advanced Linux Sound Architecture
API Application Programming Interface
ASIO Audio Stream Input/Output
CELP Code Excited Linear Prediction
CLAM C++ Library for audio and music
CVSD Continuously Variable Slope Delta-modulation
DES Data Encryption Standard
DLL Dynamic Link Library
DSP Digital Signal Processors
FEAL Fast Data Encryption Algorithm
FIR Finite impulse Response
FSK Frequency Shift Keying
FSK - FDM Frequency Shift Keying-Frequency DivisionMultiplex
GPL General Public License
GUI Graphic User Interface
IDEA International Data Encryption Algorithm
IIR Infinite Impulse Response
LPC Linear Predictive Coding
MELP Mixed Excitation Linear Prediction
OS Operation System
OSS Open Sound System
PCM Pulse Code Modulation
PD Pure Data
PFC Program Flow Chart
PGP PGPfone Pretty good privacy
RC5 Rivest’s Code 5
RIFF Resource Interchange File Format
Safer Secure and Fast Encryption Routine
STE Secure Terminal Equipment
STK Synthesis ToolKit
STU Secure Telephone Unit,
WAV Waveform Audio Format

Introduction to Voice Security

 8

1 Introduction to Voice Security

The first chapter gives a little overview of the general purpose and the
basics of this thesis. A closer look is taken on to the history of voice
security as well as on to the basic techniques and the nature of the human
voice itself.

Security and privacy of data is an overall issue, this fact rules for all kind of data at

any time but especially for those which are transmitted in some way. Communication

systems are often seen as possible security leaks for transmitted data even though

these systems employ data security techniques.

Voice encryption systems are used to guarantee end-to-end security for speech in

real time communication systems such as GSM, VoIP, Telephone, analogue Radio.

Figure 1 illustrates a possible leak in a kind of network as we use it every day.

Figure 1: Radio Network with unsecured sectors

Surely there is quite a range of applications available on the market that solves this

issue very good. Since this, often even standardised techniques are not meant to be

challenged, the approach developed while this thesis can rather be seen as a demo

for a lot of signal processing techniques (like channel filtering, up/down-sampling,

real-time audio etc.) for academic purposes then as a serious guarantee for end- to

end security.

 Network

Secure through

air interface

encryption

Secure through

air interface

encryption

Considerable as secure Unknown

technique and

security

Direct

Link

Introduction to Voice Security

 9

1.1 History

The idea of encryption of messages is probably as old as the fact that messages

have been sent between humans. A lot of different techniques have been developed

over the centuries beginning with Caesar cipher all the way to modern standards like

advanced encryption standard (AES). In fact, most of the encryption systems were

meant to encrypt text messages; the development of encryption systems for voice is

in turn a lot more difficult and mostly not satisfying achievable with analogue

techniques. Due to that problem, much pioneering work for many digital capabilities

was performed while inventing a system to provide secure voice communications. [9]

So one could say, voice encryption was one of the earliest digital applications.

The first approaches for a voice encryption system were invented in the 1920th mainly

at the Bell Labs between World War I and World War II and it of course had a strong

military background. This system consisted out of an electronic circuit that could mix

two signals into one, or alternately "subtract" two signals from each other. One of the

signals was provided by a telephone microphone, and the other one by some kind of

audio player. The audio signal was a 'noise' that was produced and recorded twice,

as matching pair. The records were provided on large shellac phonographs, those

were shipped to both ends of the telephone line where they were needed. The noise

would then be played into the system, mixed with the signal of the telephone

microphone and afterwards be sent through a cable or radio line. With the same

system on the other side and the matching record, the noise could be subtracted

back out of the signal, leaving the original voice signal. Eavesdroppers could only

hear the noisy signal, unable to understand the voice inside. After a conversation the

record had to be destroyed. Even though the technique worked in principle it was

practically very difficult to achieve synchronization of the two records. Attainably the

system was broken by the Germans.

In the 1940th a far more secure system again by Bell Labs was invented and used

which was called Sigsaly (which was just a cover name and not an acronym). This 50

ton heavy, complex system that is shown in Figure 2 was the first secure voice

encryption system.

Introduction to Voice Security

 10

Figure 2: Sigsaly exhibit at the National Cryptology Museum. [9]

The development of Sigsaly was a truly groundbreaking development; it contained

pioneers work in not less than eight achievements:

- the first realization of enciphered telephony,

- the first quantized speech transmission,

- the first transmission of speech by Pulse Code Modulation (PCM),

- the first use of companded PCM,

- the first examples of multilevel Frequency Shift Keying (FSK),

- the first useful realization of speech bandwidth compression,

- the first use of FSK-FDM (Frequency Shift Keying-Frequency Division

Multiplex) as a viable transmission method over a fading medium,

- the first use of a multilevel "eye pattern" to adjust the sampling intervals. [1]

These new technologies led not only to modern digital voice encryption but

furthermore, they were important for modern digital signal processing in general.

Figure 3 gives a short overview of the system, which is not to be explained further in

this document, for more information to Sigsaly check reference [1][9].

Introduction to Voice Security

 11

Figure 3: Simplified overview of the Sigsaly [9]

These systems were, among others, used for telephone conversations between

Winston Churchill and Franklin D. Roosevelt while World War II.

No doubt that these two developments were big milestones in history of secure voice

transmissions. In the following decades (beginning in the 1960th) a big range of

different systems has been developed to protect the privacy of the voice. First

analogue and then with the improvements of the digital signal processors (DSP), also

digital techniques were invented leading into pure software applications, for example:

Hardware Based Encryption Systems:

- Digital Voice Protection (Motorola)

- STU III (Secure Telephone Unit, Generation III)

(Mainly for the US government for telephony)

- STEs (Secure Terminal Equipment)

(Mainly for the US government for high-speed data for video-conferencing, fax

and voice applications)

Introduction to Voice Security

 12

Software Based Encryption Systems:

- PGPfone

- Nautilus

- Speak Freely

to just name a few. Besides that, there are an uncountable number of proprietary

systems on the market.

1.2 The Human Voice

For the development and understanding of a voice scrambling system it is

existentially to know some basic parameters of the voice itself. In fact the theory is

quite more complex than illustrated in the following chapter.

The human voice is simply a sound or audio signal which is generated by a human

being to communicate with one and another. Therefore, men use their vocal folds to

modulate the air stream, coming from the lungs, into vibrations which make, with the

rest of the human sound forming system (like: mouth hole, tong etc), a sound. This

sound is treated by some different effects to make a variety of sounds like vowels or

consonants.

Hence to the difference of the anatomic of every human the voice of two people

never sound the same. The biggest difference is obviously recognised between the

voices of men, women and children. This is due to the different fundamental

frequencies (often also referred as pitch of the voice) these three groups usually

have. These fundamental frequencies are mainly generated by the vocal cords which

create through their opening and closing a periodic signal with the fundamental

frequency f0.

The male vocal cords are between 17 and 25 mm in length and their fundamental

frequency are between 85 and 155 Hz, the ones of a woman are between 12.5 and

17.5 mm in length which obtains a fundamental frequency between 165 and 250 Hz.

Kids have even smaller cords, their fundamental frequency is often about 440 Hz

(Babies up to 500Hz).

Introduction to Voice Security

 13

The human speech consists out of vowels and consonants which both are important

for understanding. Vowels are voiced sounds where the vocal cords vibrate while

they are produced. Those ones have a very clear, narrow and harmonic spectrum

that is at lower frequencies. Some consonants are unvoiced or voiceless sounds

which have a wider and higher spectrum as Figure 4 shows the frequency distribution

for one-octave bands.

Figure 4: Frequency distribution of the human voice

However there is a kind of diagram that is often used for speech signals which is the

spectrogram. In this one, the frequencies are plotted over the time and the amplitude

is marked with the intensity of the colour like in Figure 5.

Figure 5: Spectrogram of vowels and consonants

As observed in the left spectrogram of Figure 5 the vowel has a predominant low

spectrum. The right spectrogram is the one of a consonant followed by a vowel

sound.

125
250

500
1000

2000
4000

6000

Vowel

Consonant

0
5

10

15

20

25

30

35

40

45

50

f / Hz

%

Introduction to Voice Security

 14

The sound of the human voice is of course a combination of the vowels and of the

consonants frequencies which leads into a spectrogram like Figure 6 for a normal

spoken sentence.

Figure 6: Spectrogram of a human voice

The complete spectrum of the human voice is individually about 1,3 – 2,5 octaves

(where the ear has around 10 octaves). That makes the average range of voice

about 80 Hz to 12 kHz. Where in this bandwidth are some sub bands more important

than others because those are necessary for the ability of understanding and more

significant for the difference of the voice.

For less bandwidth consumption the frequency used in telephony ranges from

approximately 300 Hz to 3400 Hz, the fundamental frequency of most speech falls in

this range, so that there are always harmonic series in the voice signal to give the

listener the feeling of hearing the fundamental tone. With some guard bands added

you can use a sample rate of 8 kHz. [10]

Introduction to Voice Security

 15

1.3 Techniques of Voice Security

An interesting question that may appear during the lecture of this document is the

matter of:

Is the developed application a scrambling or an encryption system?

Definition:

“A scrambler is a device that transposes or inverts signals or otherwise

encodes a message at the transmitter to make the message unintelligible at a

receiver not equipped with an appropriately set descrambling device. [13]

Whereas encryption usually refers to operations carried out in the digital

domain, scrambling usually refers to operations carried out in the analogue

domain.” [14]

This definition from the Wikipedia Encyclopaedia leads me to the realisation that the

developed system even though it is clearly digital its results are more of an analogue

scrambling than an encryption. Even so a clear differentiation can not be made.

1.3.1 Scrambling

The ideas for techniques for voice Security are not quite new in general; there are

two options which are, in literature, often referred to as analogue scrambling or digital

encryption. Where in fact this is not always a valid characterisation, not only because

of the in above mentioned, but further more because it is not always obvious how the

scrambling techniques could be performed, with affordable strength, with only

analogue recourses.

1.3.1.1 Time domain scrambling

A common technique is to record voice data for some time and cut it into small

frames. These frames can then be transmitted in a different time order

depending on a secret code that provides a different not understandable signal

since the fragments of the spoken words are not in the right order anymore.

The longer the sampled data is and the smaller the frames become, the higher

Introduction to Voice Security

 16

the scrambling rate can be which makes the system more secure. For

example: 1 sec divided into 10 frames results into ca 3,6 e3 theoretic possible

scrambling options.

On the other side the signal still consists out of the same frequencies like

before, which makes it very easy to recover basic information e.g. if there is a

man or woman speaking. Also the recording of the data leads into a time delay

which is clearly not wanted for a real-time system. Furthermore, a

cryptanalysis is possible by performing a minimal distances search relating the

differences at the beginnings and endings of the frame spectrums as

described in reference [4].

1.3.1.2 Frequency domain scrambling

The other even wider spread idea is to simply invert the frequencies of the

voice. This will change high frequencies to low ones and other way around,

turning the voice into something sounding like a familiar Disney World figure.

This technique is also often called voice or speech inversion because the

signal is inverted around the splitting frequency. Speech inversion is the most

used method of speech scrambling. One of the problems of all the inversion

techniques is that fundamental characteristics of the voice signal are not

significantly changed which makes them always vulnerable. There are three

types to differentiate:

Base-band inversion

Base-band inversion is often also called “phase inversion”, with this

technique the spectrum is inverted at a single preset never changing

frequency (split point). The descrambling is obviously very simple, if you

take the scrambled input and invert it around the same frequency used

to scramble you obtain the original again (see Figure 7).

Figure 7: Base Band scrambling with one split point [14]

Introduction to Voice Security

 17

Because the split point never changes it is a very insecure technique.

Motorola had for some time a product under the trademark "Secure

Clear" on the market. [14]

Since the split points never changed, manufacturers had often a stock

inversion points. In Table 1 some popular manufacturer communication

systems are listed with their split point.

Manufacturer Carrier Frequency
Motorola & Selectone 3.496KHz
MX-Com 3.333KHz
MX-Com & Selectone 3.339KHz
MX-Com & Selectone 3.023KHz
Norcomm 3.107KHz
Transcrypt & Selectone 2.718KHz
Selectone 3.729KHz
Selectone 2.868KHz
Selectone 2.718KHz
Selectone 3.196KHz
Selectone 2.632KHz

Table 1: Split points of popular Manufacturers [14]

Variable-band scrambling

Variable-band scrambling or “rolling phase inversion” is basically what

was described in the history part as one of the first scrambling

techniques. The signal inverted around a constantly varying frequency,

making decryption possible only if you know how the steps for the

frequency change are [14]. The time synchronisation is made by the

repeated clicking sounds before the inverting frequency changes. That

makes it clearly more secure than base band scrambling and may stop

an amateur eavesdropper but it’s far away from being considered

secure, as you can find the split frequency rapidly with a frequency look

loop device.

Introduction to Voice Security

 18

Split-band inversion

Split-band inversion is an approach for more security in base band

inversion. Instead of a single inversion of the complete band the

spectrum is divided and base band inversion is processed to both parts

before they are recombined. This can again be combined with rolling

phase inversion and also the split point can be changed randomly to

achieve more security. However, also this technique does not increase

the security level significantly since it brings along the same

vulnerabilities of insecurity as mentioned before. [14]

Figure 8: Inversion of the divided signal out of Figure 7 [14]

1.3.1.3 Amplitude modification

Of course there is also the option to modify the amplitude of the signal but

since it does not really change the signal and is hard to employ it is

practically not used, with the exception of pause filling.

As we have seen, the different voice scrambling techniques are a quite insecure way

of producing voice security if you use them isolated, but in combination they can

bring up quite a notable level of scrambling. Another point to think about is that

although “analogue scrambling” techniques have a lot of security lacks, they have

one big advantage in common. The resulting scrambled signal is always still an audio

signal which makes these techniques independent from the transmission system that

they are desired for (assuming a voice transmission system).

Introduction to Voice Security

 19

1.3.2 Encryption

As outlaid before, encryption often refers to digital technologies, in fact, if you hear

about data security and encryption in context with modern technologies, you barely

talk about something else but digital encryption. “Digital encryption” can be seen as a

much stronger method of protecting speech communications than “analogue

scrambling”. The big advantage of digital encryption is that it does not matter what

kind of signal is encrypted. That makes digital encryption quite powerful because you

can create one standard to handle e.g. text, audio, video and every other kind of

data. Certainly, digital encryption takes always the same start point, the analogue to

digital conversation, however in voice encryption things are a bit different since there

are two different ways to go after this.

1.3.2.1 Digital Encryption Standards

Since IT security became a growing market in the past, there are a lot of

different standards to choose from. Here is a list of some famous ones:

- DES (Data Encryption Standard)

- AES (Advanced Encryption Standard) / Rijndael

- FEAL (Fast Data Encryption Algorithm)

- IDEA (International Data Encryption Algorithm)

- Safer (Secure and Fast Encryption Routine)

- RC5 (Rivest’s Code 5) and RC6 (Rivest’s Code 6) [7]

The theory is always the same, a digital bit stream (e.g. a digitized voice) or

block (e.g. digital recorded audio) is being processed through (by) an

algorithm which consists mostly out of a number of mathematical trapdoor

one-way function1 that changes, and inserts bits in a way that the encrypted

result contains as less readable information about the original as possible.

Which means nothing else than: a good encryption will change the original

signal so much that none of the original characteristics are preserved anymore

[4]. The algorithm usually has same parameters, often referred as key K,

1 In cryptography a mathematical function is called trapdoor one-way function, if a pre image of f(x)

can be computed in polynomial-time with additional trapdoor information [3]

Introduction to Voice Security

 20

which ensure that the result of the encryption stays unreadable even though

the right algorithm but the wrong key has been processed. Figure 9 gives a

little impression of the process of the Data Encryption Standard (DES).

Figure 9: Overview of Data Encryption Standard [3]

1.3.2.2 Vocoder Encryption

In digital telecommunication systems, voice coders are an often used

technique to reduce the required transmission bandwidth. A voice coder is a

device which analyzes the sounds generated by the human voice, abstracts

parameters from it which can be sent or stored and synthesised at the other

end again. By doing this vocoder dramatically reduces the amount of

information needed to store or transmit speech. Since the late 1970s,

vocoders have been implemented using linear prediction which is a way of

representing the spectral envelope, a technique leading into linear predictive

coding (LPC). However assuming that a cryptographically algorithm is applied

to the parameters before they are sent, the result is a clearly encrypted voice

signal [15]. Several vocoders have been invented e.g.:

Introduction to Voice Security

 21

- LPC-10, FIPS Pub 137,

- Code Excited Linear Prediction, (CELP), Federal Standard 1016,

- Continuously Variable Slope Delta-modulation (CVSD),

- Mixed Excitation Linear Prediction (MELP),

- Adaptive Differential Pulse Code Modulation (ADPCM), former ITU-T

G.721. [15]

Digital encryption has the big advantage that there are little possibilities for

cryptanalysis compared to analogue scrambling. Except some advanced

mathematical approaches, there are only brute force attacks available which are

usually not in polynomial time2 computable tasks.

But on the other side because encryption is a digital process, it can be critical to

ensure that the encrypted data arrives correctly at the receiving end if the

transmission channel is not sufficiently reliable. If the data is corrupted, it will not be

decrypted correctly causing degradation in voice quality. Furthermore, if data are lost

(or added), the encryptions may lose synchronisation and communication will be lost.

[4]

2 A polynomial-time algorithm is an algorithm whose worst-case running time function is of order O(nk)
where n is the input size and k ≥ 0 is a constant. [3]

Project Overview

 22

2 Project Overview

The following chapter will give you a brief overview of the different facets
of the developed real-time voice scrambling system. It is meant to be an
introduction to get an impression of the complete system that is going to
be explained detailed in the following chapters.

The idea for the system was based on the thesis of Pere Salvadó Lloveras [7] who

developed a MatLab program that scrambles the frequencies of a voice, and offers a

graphic user interface (GUI) to command and analyse the data. The disadvantage of

the program was that, due to MatLab, it was slow and it could only scramble files and

no data streams from the soundcard.

Based on that the requirements for this thesis were:

- programming the project of Pere Salvadó Lloveras in C,

- getting the audio directly from the sound card or from a wave file,

- operating in real-time,

- operating as a full duplex communication system,

- implementing the software for optional flexible use e.g. DSP or

cross-platform usage.

The general idea is to obtain a system that works basically like Figure 10. Where the

setup for a one way communication system is shown, for a full duplex communication

is of course a second channel necessary.

Project Overview

 23

Figure 10: Basic System Setup

The basic scrambling code is generally designed to run in real time on any kind of

processor. The scrambling code requires simply a digitalised audio stream and

returns digital data which has to be converted back into analogue waveforms through

a D/A converter. Since the software is primary supposed to be a computer

application, which naturally makes it much easier to handle and to develop, the

scrambling code has to be embedded into the computer environment which handles

the audio data (see Figure 11).

Figure 11: Architecture of a normal computer

Project Overview

 24

The sound card gets and returns the audio data from and to the microphones and

speakers through its AD/DA converter. The software access to the sound card is

guided by varies application programming interfaces (API), which differs within and

from platform to platform.

For a cross platform application, one that works one different platforms or OS, it is

necessary to be able to use all these different API’s. In this case an additional API a

fully software orientated API is used to create one access point to interface a number

of different system API’s. The used API is PortAudio which will be described in

chapter 5.3.

Additionally, the audio signal is also supposed to be recorded and played in a raw

format including the scrambling process. That of course makes the development

much easier.

The approach for the voice scrambling system, developed in this thesis, is quite

different from the basic approaches described in chapter 1.3. The idea is a kind of

frequency scrambling technique, but in this case, only to scramble sub-bands of the

original frequency itself and not adding any extra signals or multiplexing the

frequencies on to other signals. While most of the techniques, described earlier, can

be strictly differentiated between analogue and digital signal operation, in this case

the classification might be a bit confusing because the result of the scrambling

process could appear like a analogue technique, but in fact the process itself is

clearly digital and can only be achievable with digital signal processing. This is also

the reason why I will refer to the process as scrambling instead of encryption.

Figure 12 gives a brief overview of the idea that is being explained detailed in the

following chapters (see Appendix A for a bigger version).

Project Overview

 25

Figure 12: Overview of the voice scrambling system

Project Overview

 26

Most important are the blocks in the middle where the frequencies of the voice signal

are being separated through filters and down-sampled into sub-bands, scrambled

and afterwards again reassembled passing through an up-sampling and filtering

process again.

The other important point is the real-time processing. A system is commonly referred

to be real-time if the total result of the process not only depends upon its logical

correctness, but also upon the time in which it is performed. In a hard or immediate

real-time system, the completion of an operation after a certain deadline is

considered useless. A soft real-time system on the other hand will tolerate such

lateness, and may respond with decreased service quality. In this case we have a

soft real-time system and our deadline would be around 60 ms because the human

ear / or brain will not notice a delay smaller than that. [23]

For the development of a real-time system the aspect of framing or blocking the

incoming data is an existential task. Generally, real-time systems avoid computing

the incoming data directly on the stream because the systems commonly do not have

the ability for parallel processing and it can not be assured that there are now time

differences between the incoming data and the process, i.e. when the continuing

sampled data is not processed fast enough by the CPU.

Since the data is usually sampled at interrupt level, storing the incoming stream while

the interrupt into blocks and processing those blocks at a time, makes a system

stable and gives it time to process the data.

Unfortunately, this causes always a delay which is heavily depending on the amount

of samples accumulated in one block and the sampling rate, but of course also on

the process itself and on the system performance. On the other hand making the

buffer as short as possible is also not a good idea because short buffer could cause

easily a buffer overflow or would be rewritten before being processed, so a good

balance of the block size and all the mentioned parameters has to be found.

The voice scrambling system

 27

3 The voice scrambling system

The chapter “voice scrambling system” describes the system in detail. A
closer look on each block maintained in the chapter before and at the
corresponding basic signal theory is taken. Discovering what the reasons
are, that the system works like it does.

The signal that we use to visualise the process consists of a 1 kHz and 2,2 kHz

sinusoid wave sampled at 8 kHz which is visible in the spectrogram and in the

frequency plot in Figure 13.

Figure 13: Spectrogram and Frequency plot

As commonly known we achieve the image frequencies in digital signal processing

through the sampling process, which can be observed at 5,8 kHz and 7 kHz in Figure

13, which those are not important for this system so they will not be shown in the

following graphs.

3.1 Encoder

The encoder is the device that transfers the clear voice signal into scrambled noise,

while on the other side of the communication system there is a decoder located doing

the inverse process, in fact for this system the encoder and the decoder do not differ

a lot from each other.

The voice scrambling system

 28

3.1.1 Frequency separation

As mentioned before, the general idea is to scramble the frequencies of an audio or a

speech signal. So the resulting signal sounds different from the original. As seen in

chapter 1.2, the human voice consists of different frequencies. To scramble these

frequencies, the first necessary thing to do is to cut the original signal into sub-bands

which the in Figure 14 drawn process is used for.

Figure 14: Overview of the frequency separation process

Generating sub-bands of frequencies can be easily achieved by filtering the signal

into high-pass band (with filter H(z)) and/ or a low-pass band (with filter G(z)).

Figure 15: Low-pass filter block

The design of the filter will be described and discussed in chapter 5.4.3. Generally

every kind of filter would be possible, in this case we use a Chebyshev II low-pass

filter with kHzFstop 2,2= and a high-pass filter with kHzFstop 37,2= and a characteristic

like in Figure 16.

The voice scrambling system

 29

Figure 16: Low-pass/ High-pass filter characteristic

Filtering with this low-pass filter will obviously result in a signal which contains only

the frequencies in the passing spectrum of the filter as in Figure 17. (The continually

shape of the signal can be recognised from the discrete data in Figure 17 where only

the first 50 samples of the signal are visualised)

Figure 17: Discrete- and frequency plot of filtered signal

Since sub spectrums of one signal can not be reconstructed in any other than the

original way, it is necessary to use some additional operations to obtain a signal

which contains a part of the information of the original signal, but in turn has the

ability to be scrambled in some way.

The voice scrambling system

 30

The manoeuvre of choice is, to down-sample the sub-band.

Figure 18: Down-sample block

The down-sampling process can be easily performed by taking every second sample

out of the signal, which is not a problem in digital signal processing. Doing this, we

reduce the size of the signal to its half but even more important from the signal’s

theoretical point of view, the frequency is shifted to its double; compare Figure 19:

Figure 19: Discrete- and frequency plot of down-sampled signal

This hole cascade of operations like shown in Figure 14 must be done N times to

obtain a variety of scrambling options. N should be high which again extends the

processing time. In this system between 2 and 16 sub-bands are available (Figure 12

shows 4 sub-bands). The results are the sub-bands and with those are the

scrambling objectives.

The voice scrambling system

 31

3.1.2 Scrambling

With the result of the sub-band generation we manage to have N items that can be

scrambled. The scrambling process is the actual process of making the signal any

different from the original.

To obtain a scrambling code it is necessary to generate N x N matrix which

characterises the scrambling directions.

HH
HL
LH
LL

MatrixScrambling

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

HHHLLHLL

 Equation 1

Where the rows in Equation 1 represent the path for the generation, and the columns

represent the path for the reconstruction of the sub-bands, which means to where

they are scrambled. Of course the matrix in Equation 1 is the identity and

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

 0 0 1 0
 0 0 0 1
 1 0 0 0
 0 1 0 0

InvMatrix Equation 2

 Equation 2 is the entire inversion of the signal.

Theoretically there are:

1−= NNx Equation 3

possibilities for the scrambling result, but not all of the possible combinations make a

good valid code. There are two main matters that have to be looked after.

The voice scrambling system

 32

- The generated matrix must have a minimum distance to the original one.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

 1 0 0 0
 0 1 0 0
 0 0 0 1
 0 0 1 0

1BadMatrix Equation 4

- The rows should not be in the same order like in the original matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

 0 0 0 1
 1 0 0 0
 0 1 0 0
 0 0 1 0

2BadMatrix Equation 5

Otherwise the scrambled spectrum is too similar to the original one and can be

understood easily. To make up a unique matrix a user defined key is employed as a

generator. Two different ways are possible:

- Calculating the minimum difference to the identity matrix and to the before

calculated row. Whereas, a problem with deadlocks could occur.

- Providing a look up table with the best available combinations, this is

addressed through the user defined key. This probably reduces the possible

number of matrixes and with that the uniqueness.

After generating the matrix the scrambler has just to assure that the sub-bands are

shifted to the desired rebuilding path.

Figure 20: Scrambling block

The voice scrambling system

 33

The scrambling process has no direct impact on the signal processing but of course,

it determines which path or which sequence of filters has to be used in the

reconstruction branch.

3.1.3 Frequency reassembling

During this final action, the real frequency shifting is performed. Figure 21 illustrates

that to rebuild the signal, similar operations as in the frequency separation are used,

but for different signals since they have been scrambled before.

Figure 21: Overview of the frequency reassembling process

Although the graph looks quite similar, it has in terms of the signal theory a total

different meaning. In this case we of course do not sample down again, but up.

Figure 22: Up-sample block

Up-sampling is achieved as easy as down-sampling, simply by adding zeros after

every sample. That causes the extension of the signal to its old length and, further

more important, an image frequency as to be observed in Figure 23.

The voice scrambling system

 34

Figure 23: Discrete- and frequency plot of up-sampled signal

In D/A conversion one would now use a low pass filter at 2 kHz to reconstruct the

original signal and to delete the image frequencies out of the spectrum. In this case

we use exactly this to make a shift of the frequency. Nevertheless we need to

reconstruct the signal because through the inserted zeros we have a signal full of

sharp steps.

Figure 24: High-pass filter block

However, by high-pass filtering we obtain the mentioned smooth reconstruction and

make use of the image frequency instead of the original one and obtaining an

inverted shifted signal.

The voice scrambling system

 35

Figure 25: Discrete- and frequency plot of filtered signal

We do not have to worry about upper image frequencies (above 4 kHz not ins Figure

25) because they are going to be filtered out by the reconstruction filter at the very

end at the D/A conversion.

Of course, one could argue that the down-sampling is an unnecessary step because

one could directly set every second sample to zero instead of down-sampling it first,

but there are two reasons why it is presented here with this step in between:

- it makes it easier to understand,

- depending on how you implement the scrambler, it may be easier

and save memory if you work like that, i.e. if you implement strictly in

blocks.

After all the signals are being mixed again always two at a time for the same number

of times they have been cut into sub-bands.

Figure 26: Sum block

After that is done, finally one encoded stream is being returned from the process.

The voice scrambling system

 36

With that we have the complete encoder explained. Figure 27 illustrates the complete

encoding process as described before plus the already mentioned buffering. As seen

in the description of the scrambler, there is not a very satisfying scrambling possibility

with four sub-bands so it should not be used in practise but it takes good advantage

for illustrating.

Figure 27: Encoder/ Decoder

The two main aspects of the encoder that have to be balanced are the:

- number of sub-bands,

- processing time,

each of those have a direct impact on one and the other, since a double number of

sub-bands also creates three times the number of filter processes.

3.2 Decoder

The decoding process must have the same structure as the encoding process since

we are talking about a symmetric scrambling technique.

The only difference is the scrambling part, where the matrix has to be inverted by

transposing it as to be seen in Equation 6.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

′

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=′=

 0 1 0 0
 0 0 1 0
 0 0 0 1
 1 0 0 0

 0 0 0 1
 1 0 0 0
 0 1 0 0
 0 0 1 0

][MatrixEncryptionMatrixDecryption

Equation 6

Audio access

 37

4 Audio access

This chapter gives a little introduction into the different possibilities of
accessing audio data rather from a file or from an API. Special attention is
put onto some software APIs that combine different system audio APIs.

To develop a real time audio application it is necessary to obtain the audio data

directly from the hardware respectively from the operation system (OS). Since there

are a lot of different kind of hardware with their drivers and also a lot of different

operation systems there are multifarious possibilities to access the audio data. These

access points are commonly called application programming interface (API), those

are to be used if the data can not be read from a file.

4.1 WAV Files

Beside the direct access of the audio data from the hardware it is also useful to be

able to use recorded files, in fact this might not be necessary for real time systems

but at least for development and testing it is an essential source. WAV is a short form

for a Waveform audio format; it is a standard data format for storing audio data. The

WAV format is a variant of the RIFF bit stream format method for storing data in

“chunks”, it is the main format used on Windows systems for raw audio. To use WAV

files it is necessary to read or write the WAV file header that is shown in Figure 28.

Audio access

 38

Figure 28: The canonical WAVE file format [16]

A Wave file can be read like every other file. It only has to be taken care that the first

36 bytes are interpreted as the header, respectively are written as the header.

4.2 System Audio APIs

Due to the fact that every operation system works differently, the range of different

audio API is big. Attainably manufactures of audio hardware and others sometimes

even develop their own API which contributes to the number. These ones are the

system APIs because those are somehow connected to the hardware or to the

operation system. It is almost impossible to give a complete list of audio API.

Nevertheless, here are some of the most important ones listed.

Audio access

 39

Microsoft

Since Microsoft is probably still the most imported deliverer of operating

system the main idea is explained on its example. Note that the basic function

also rules for other ones.

Figure 29 shows the basic structure of a soundcard driver for the Windows

operating systems. The middle area represents what is commonly called the

"driver". That is not completely right since the upper parts of it are usually

Dynamic Link Library (DLL), which are software modules that are part of the

operation system or single software pieces which are loaded and used by the

application on request. The audio software is furthermore accessing the API,

which in turn accesses the driver and that one accesses the hardware. This

means that the API is the interface between the audio application and the

driver of the audio hardware.

Figure 29: Model of MS Windows audio APIs [17]

- Windows MultiMedia Extensions (default for PCs)

The MultiMedia Extensions (MME) of the Microsoft Windows OS is

probably the most used audio API. It was first integrated in the Windows

3.0 based "Windows with MultiMedia Extensions 1.0" (not very well

known) but it contained in later releases as Windows 3.1 and 3.11 and

is still, with small modifications, present in today’s versions. MultiMedia

Extensions does not only specify the OS version but furthermore the

API to access soundcards.[17]

Audio access

 40

 DirectSound

DirectSound is part of the DirectX project which contains also

DirectShow, DirectDraw; DirectSound 3D. It was developed by

Microsoft to give especially the game programmers more flexibility in

the development of applications. For that it provides a direct interface

between applications and the sound card. The main features are:

- passing audio data to the sound card,

- volume control, recording and mixing sound,

- adding effects to sound e.g. reverb, echo, flange,

- using hardware controlled buffers for extra speed,

- positioning sounds in 3D space,

- capturing sounds from a microphone or other input, and

- controlling capture effects during audio capture,

- ability to play multi-channel sounds at high resolution,

- allowing several applications to conveniently share access to the

sound card at the same time.

- It also provides the ability for games to modify a musical script in

response to game events in real time, e.g. the beat of the music

could quicken as the action heats up.

If a driver is not optimized for DirectSound, Windows will automatically

emulate DirectSound output using the MME devices.

 Core Audio APIs in Windows Vista

Windows Vista has a new API which was not available in earlier

versions of Windows. The core Audio combines the access point for the

higher-level APIs such as DirectSound and waveXxx but can also be

directly accessed. In Windows Vista, a new set of user-mode audio

components provides client applications with improved audio

capabilities. These capabilities include the following:

Audio access

 41

- low-latency, glitch-resilient audio streaming,

- improved reliability (many audio functions have moved from kernel

mode to user mode),

- improved security (processing of protected audio content takes

place in a secure, lower-privilege process),

- assignment of particular system-wide roles (console, multimedia,

and communications) to individual audio devices,

- software abstraction of the audio endpoint devices (for example,

speakers, headphones, and microphones) that the user manipulates

directly.[18]

Unix (Linux, FreeBSD, Solaris)

 Open Sound System (OSS)

The Open Sound System is the main sound API for UNIX like systems.

It is available in at least 11 Unix OS and sometimes even part of the

kernel. The main aim of OSS is to give access to the hardware driver

which works for it as a collection of those. With that it is possible to write

an audio application that works with any sound controller hardware.

 Linux ALSA

Advanced Linux Sound Architecture is the evolution of OSS. Since

Linux version 2.6 it replaces OSS by default, although a backwards-

compatibility layer exists. The main innovations were:

- automatic configuration of sound-card hardware,

- possibility for multiple sound devices in a system,

- low-latency.

Audio access

 42

 Linux Jack

Linux Jack is mainly designed for professional audio applications, the

main focuses are on:

- synchronous execution of all clients,

- low-latency operation.

It is written for POSIX conformant operating systems such as

GNU/Linux and Apple's OS X.

Macintosh

 Sound Manager for OS 7-9

The Sound Manager is more or less the equivalent to the Windows

MME but not so easy accessible. It controls the production, recording

and manipulation of sounds on Macintosh or Apple computers.

 Core Audio for OS XBurk

Core Audio is real API for audio propose on Apple's Mac OS X

operating system. A big advantage is that it includes an implementation

of the cross-platform Open AL library which we are going to talk about

in chapter 4.3. Its primary goals are:

- high-quality, superior audio experience for Macintosh users,

- easier programming for developers.

ASIO

Audio Stream Input/Output (ASIO) is an API defined by Steinberg

which is a major company for professional electronic audio devices. It

connects the audio application directly to the Steinberg hardware,

bypassing the operation system and with that saving latency allowing

direct high speed communication with audio hardware. It is primary

developed for Steinberg Hardware in Microsoft environment, but there

are also some approaches with Linux Jack. Mac OS normally do not

Audio access

 43

have the problem of high latency. Steinberg hardware also often brings

along a very easy to use programming environment, which makes it first

choice for professional musicians and audio engineers.

4.3 Software Audio API

The big amount of Audio APIs makes it quite difficult to develop a cross platform

application because for that it is necessary to combine as many as possible API

accesses to achieve an application that runs on any “home computer”. Fortunately,

there are some software pieces that do exactly that. Those software APIs, because

they connect software to software, work like an over layer on top of the different

possible Audio APIs. There are different ones to choose from:

 Pure Data

PD is a real-time graphical programming environment for audio, video, and

graphical processing that comes as a data flow orientated programming

language itself. Additionally it gives the user also the facilities of a visually

development environment. It is mainly used to produce interactive multimedia

applications etc. PD can be extended through new internal blocks but also

through external classes written in C, C++, Ruby etc. Furthermore it is

developed as cross-platform application; versions exist for Win32, IRIX,

GNU/Linux, BSD, and MacOS X.

 Synthesis ToolKit

STK is basically a set of open source audio signal processing and algorithmic

synthesis classes written in the C++. It was developed by Perry Cook at

Princeton University and Gary Scavone at CCRMA (Stanford University). It is

supposed to serve as a cross-platform, real-time controlled, easy of use

application also with an educational background. It contains both low-level

synthesis and signal processing classes and higher-level instrument

synthetisation classes.

Audio access

 44

 CLAM

CLAM (C++ Library for audio and music) is a software framework for research

and application development in the field of audio and music. It is fully object

orientated C++ Library that was mainly developed by the Gruop de Recerca

en Tecnologia Musical (MTG) de la Universitat Pompeu Fabra en Barcelona. It

brings all the basic necessary tools for the analysis, synthesis and

transformation of audio signals but furthermore, it serves with its GUI as a

software framework for research use. [19]

 OpenAL

The Open Audio Library is probably one of the most famous representatives of

this class of software. It is a cross-platform 3D audio API and because it has

big advantages in 3D it is very appropriate for use with gaming applications.

OpenAL uses high level abstraction algorithms to simulate the feeling of

surround and 3D sound to the listener. Unfortunately the recording direct

access to the hardware is a bit more complex. [20]

 PortAudio

PortAudio is another free, audio I/O library, it is meant to have cross platform

abilities (including Windows, Macintosh (8, 9, X), Unix (OSS), SGI, and BeOS),

and a very easy to use API for recording and/or playing. PortAudio is part of

the PortMusic project which additionally contains PortMidi and PortSound

Files. It is published under the General Public License (GPL), it is meant to

help for a better exchange of audio application between developers on

different platforms. PortAudio is a simple API and does not bring any functions

like mixing, filtering or analysing.

Audio access

 45

Some of the facts of PortAudio are:

- data types: 16 and 32 bit integer and 32 bit floating,

- full duplex or half duplex,

- enumerating available devices and querying them for properties

such as available sampling rates, number of supported channels

and supported sample formats,

- cross platform (Microsoft Windows™, Macintosh™ ,Linux),

- platform neutral interface to real-time audio streaming services in

the form of a 'C' language. [21]

Most of these APIs are licensed under the General Public License (GPL) (see

Appendix B) so they are free to use within these regulations. For sure there are a lot

more APIs like these, but for several reasons these were the ones to choose from for

this project. The following table helped making the best choice.

 CLAM OpenAL Pure Data STK PortAudio

Audio Output + ++ + ++ ++

Audio Input + - + ++ ++

Filter and effects

included

++ + ++ + -

Analysis tools

included

++ - ++ + -

Synthesis possible + + + + -

3D sounds possible - ++ - - -

Real-time playback

capability

+ + + ++ ++

Overhead ↑ = ↑ ↓ ↓

Table 2: Comparison of software APIs

- not integrated; + integrated; ++ integrated and easy to handle

Project implantation

 46

5 Project implementation

Based on the theory and techniques outlaid in the previous chapters and
on the MatLab code of Pere Salvadó Lloveras a real-time voice scrambling
application was programmed. This chapter describes the actual
implementation of the system and gives focus on the most important parts.

5.1 Overview

Obviously the theory of the last chapters has to be simply converted into a

programming language, but to achieve a duplex real-time encryption application it is

also necessary to obtain the audio data directly from the hardware respectively from

the operation system. Using one of the above mentioned software APIs makes this

easier but of course not trivial since this API also requires controlling. For the duplex

requirements some hardware configurations have to be done like described 5.2 and

the source code has be organised in this case it consists out of two main sections:

Figure 30: Section of the source code

the main loop with the audio control as described in 5.3. and the manipulation

process as to be seen in 5.4. The actual sub-band generation with the frequency

separation and down-sampling is part of the manipulation and performed in the cut

method. Please note that because of space reasons the following are abstracted

PFCs which do not show every detail of the real implementation but give you a good

overview of the general idea. Also some functionality is left out to make it easier to

understand.

Project implantation

 47

5.2 Duplex communication

A duplex or to be more detailed a full duplex system is a system consisting out of two

connected devices which can communicate with one another in both directions at the

same time. Duplex systems are employed in nearly all communications networks.

[22]

To achieve full duplex capability in the present system it is necessary to use two input

and two output channel of the soundcard, which is not a problem for most hardware

because they work stereo anyway. Nevertheless the software and the hardware have

to be set up for that. The necessary software configurations are discussed in chapter

5.3 while Figure 31 shows how the hardware should be set up with two PCs.

Figure 31: Setup for duplex communication with two PCs

Project implantation

 48

5.3 Main method and use of PortAudio

As to be seen in Table 2 in chapter 4.3 there a lot of different reasons to choose one

or the other software API. In this case the PortAudio Library was chosen for the

access to the audio data because it brings the smallest overhead for this application

and is easy to use. Nevertheless an existing application out of the thesis of Aitor

Pérez Pellitero [8] was accessible. As mentioned before, PortAudio is a capsulation

of different system audio APIs. To access the hardware you have to choose one path

at a time as Figure 32 illustrates.

Figure 32: Use of PortAudio

Using PortAudio is pretty easy, the software comes as pure code, which has to be

compiled as a dynamic link library (DLL). After doing so the header file has to be

included and the DLL has to be linked to the project that desires to use audio data.

The handling of PortAudio generates more or less the complete main method as

visible in Figure 33.

To achieve a full duplex system the two channel (stereo) function of the soundcard is

used. PortAudio presents these two channels like in a WAV file, the channel changes

every other block. The first recorded block is the right channel the next one the left

and so on. In Figure 33 this can be observed with the encoding and decoding

process after each other. This of course alters the requirements of the processing

speed of the encoding/ decoding functions because they have to work fast enough to

run the process twice within the real-time time limits.

Project implantation

 49

Figure 33: Abstract PFC of main loop

Project implantation

 50

In the code itself there is only little to do to run PortAudio.

1. PortAudio has to be initialised.

2. The stream has to be managed (started and later stopped).

3. The manipulation of the audio data has to be performed.

4. The stream has to terminate.

A main part of the initialisation is in the Pa_OpenDefaultStream command since in

here the basic parameter for the audio are set

Pa_OpenDefaultStream(&stream,
 2, /* input channels */
 2, /* output channels*/
 paFloat32, /* data type */
 44100, /* Sample Rate*/
 256, /* frames per buffer*/
 Callback, /* Name of callback function */
 &data); /*This is a pointer that will be
 passed to the callback function*/

 [21]

However PortAudio delivers the audio data always in blocks of sizes that are defined

like shown above. Furthermore there are two basic ways of using PortAudio. The first

and older one is the Callback mode. The following code example gives a little

overview of the main loop:

#include "stdio.h"
#include "portaudio.h"

int main(void)
{
PortAudioStream *stream;
Pa_Initialize();

Pa_OpenDefaultStream(&stream,
 2, 2, paFloat32, 44100.0,
 64, 0, Callback, NULL);

Pa_StartStream(stream);
Pa_Sleep(10000);
Pa_StopStream(stream);
Pa_CloseStream(stream);
Pa_Terminate();
return 0;

}

In the function Pa_OpenDefaultStream() the second to last parameter names the

Callback function that is supposed to perform the audio manipulation. This function

Project implantation

 51

will be called by PortAudio when ever audio data is waiting to be manipulated or

needed. A simple example of a Callback function is shown next:

static int Callback(void *inputBuffer, void *outputBuffer
 unsigned long framesPerBuffer, PaTimestamp outTime, void
 *userData)
{
float *out = (float *) outputBuffer;
float *in = (float *) inputBuffer;
float leftInput, rightInput;
unsigned int i;
if(inputBuffer == NULL) return 0;

for(i=0; i<framesPerBuffer; i++)
 {
 leftInput = *in++;
 rightInput = *in++;
 /* Manipulate */
 *out++ = leftInput rightInput;
 *out++ = rightInput;
 }

return 0;

}

The other option (since version V19) is to use the blocking mode, this is also shown

in Figure 33. In this case the process is performed like reading or writing from a file.

The manipulation is simply performed after a block was read completely. See the

following code:

#include "stdio.h"
#include "portaudio.h"

int main(void)
{
PortAudioStream *stream;
Pa_Initialize();
float *Block;

Pa_OpenDefaultStream(&stream,
 2, 2, paFloat32, 44100.0,
 64, 0, NULL, NULL);
Pa_StartStream(stream);

Pa_ReadStream(stream, Block, FRAMES_PER_BUFFER);
/* Manipulate */
Pa_WriteStream(stream, Block, FRAMES_PER_BUFFER);

Pa_Sleep(10000);
Pa_StopStream(stream);
Pa_CloseStream(stream);
Pa_Terminate();
return 0;

}

Project implantation

 52

Both ways have their advantages. Callback: high performance, compatible with all

system APIs. Block: easier to use, compatible with party projects.

But for this project the choice fell onto the blocking mode because the performance is

high enough and it makes the code far easier to understand.

5.4 Manipulation

The manipulation method as shown in Figure 34 takes care of the actual signal

processing and scrambling process.

Figure 34: PFC of the manipulation method

Project implantation

 53

For easier and reuse reasons it is divided into sub-routines, there are the cut,

scramble and rebuild methods. The task that has to be performed by manipulation

method is to call the sub-routines in the right order in the quantity that the user

defined sub-bands require. The manipulate function looks like this:

int manipulate(const void *in, void *out,unsigned long length,

 ScramblingParameters_t *ScramParameter)

The function works on a block of audio data that is referenced with the pointer *in,

the result of the manipulation will be stored under the reference of *out, the

parameter length inherits the length of a block and *ScramParameter is an

enumeration for the user defined scrambling parameters.

5.4.1 Cut/ build method

The cut and build method use basically the same operations but in a different

order. As in Figure 35 shown they consist out of a number of loops which

process the up/ down-sampling and call the filter routines. The function can be

called through:

int cut(SAMPLE_TYPE *data,unsigned int start,unsigned int end,

 SAMPLE_TYPE z[])

Cut separates the audio data in *data between start and end into a high-band

and a low-band and memorises the down-sampled result back into same

memory in *data. That way memory can be saved. z[] is an array that keeps

the delay line of the filters (see 5.4.3 Filter).

Project implantation

 54

Figure 35: PFC of the cut method

Project implantation

 55

5.4.2 Scrambling method

The Scrambling Method takes care of the generation of the scrambling matrix

and also shifts the sub-bands so they get rebuild through the path the matrix

defines.

int scramble(SAMPLE_TYPE *data,unsigned int length,int n_subbands,

 char mode,int code)

With the number of sub-bands in n_subbands and the length length it is easy

to calculate the beginnings and endings of the sub-bands in *data, with the

matrix, which is produced through a module operation with the user defined

key in code, the position of the sub-bands can be shifted. mode determines if

the scrambling is the encoding process or the decoding process.

5.4.3 Filter

One of the major parts of this project is the choice and the development of the

filters. Theses processes have a direct impact on to the quality of the

scrambled signal, on the quality losses of the resulting decoded signal and on

the time performance.

That for the real-time scrambling system would need a filter that has:

+ a fast roll off for a clear sub-band cut,

+ a low order to be able to run in real-time,

+ linearity for less losses in the final signal,

+ stability.

As commonly known there are two ways of implementation filters in digital

signal processing, finite impulse response (FIR) and infinite impulse response

(IIR) which have different advantages to optimise the in Figure 36 shown

problem.

Project implantation

 56

Figure 36: General features of a filter [5]

The most important features of FIR filters are:

+ inherently stable,

+ do not require feedback,

+ their linearity (phase change is proportional to the frequency change; a

plus for crossover filters),

- high order,

- slow roll off.

IIR filter certainly do not have the advantage of the FIR filters, but do have some

other important features:

+ fast roll off,

+ low order,

- can have ripple,

- need a feedback,

- might be unstable,

- non-linear phase.

To determine what kind of filter meets best the needs of the project, both where

implemented in the following way.

Project implantation

 57

FIR Low-pass filter:

- designed with a Kaiser window

- Fs=10 kHz; Fpass=2,4 kHz; Fstop= 3 kHz

- - 80 dB stopband ripple

- Order 84

FIR High-pass filter:

- designed with a Kaiser window

- Fs=10 kHz; Fpass=2 kHz; Fstop= 2,6 kHz

- - 80 dB stopband ripple

- Order 84

Figure 37: Plot of FIR filter

The source code is quit simple but the here presented code is only to be seen

as a test version, because it has a lot of options for speed improvement.

Project implantation

 58

for (k=NTAPS; k> 0; k--)
{
y += b[k] * z[k];
z[k-1] = z[k];
}
z[1] = x;
return y;

The result of filtering and reassembling for a test signal with 4 sub-bands with

this filter is presented in Figure 38.

Figure 38: Test signal filtered with 4 sub-bands and FIR filter

The image frequencies are good to see, those are not filtered out due to the

slow roll off a faster roll off would require a higher order which is not possible

due to the real-time requirements.

Project implantation

 59

IIR Low-pass filter:

- designed as Chebyshev II

- Fs=10 kHz; Fstop= 2.62 kHz

- - 80 dB stopband ripple

- Order 20

IIR High-pass filter:

- designed as Chebyshev II

- Fs=10 kHz; Fstop= 2.37 kHz

- - 80 dB stopband ripple

- Order 20

Figure 39: Filter plot of IIR filter

The test code for the IIR Filter is not far more complex than the FIR code but

of course it requires the feedback. For this code also rules what was said for

the FIR about the speed improvements.

Project implantation

 60

for (k=NPOLES; k>0; k--)
{
y += w[k]*b[k]-v[k]*a[k];
w[k] = w[k-1];
v[k] = v[k-1];
}
w[1]=x;
v[1]=y;

return y;

The result of filtering and reassembling for a test signal with 4 sub-bands with

this filter is presented in Figure 39.

Figure 40: Test signal filtered with 4 sub-bands and IIR filter

Due to this outcome of the test signals and the smaller order of the IIR filter it

was an obvious choice for the IIR filter. Also the frequencies disadvantages of

the FIR filter would have probably not been dramatically relevant for a speech

signal.

Project implantation

 61

Real-time audio and filters

When using filter in a real-time environment there is one problem occurring.

The resulting signal is going to contain a periodic clipping noise.

This is because of the nature of the filters and their tendency to settlement.

Supplementary digital filters have at least a delay line (FIR), some even a

feedback line (IIR) which is at the initialisation of the filter certainly zero.

Starting to filter a block a filter settlement at the beginning of every block is

inserted like Figure 41 illustrates. In relation to the end of the previous block,

this causes a crack and that sounds like the mentioned noise.

Figure 41: Settlement of the filters

To avoid this problem, one has to take care of the reassembling of the blocks

as pointed out at the end of the process in Figure 42.

Figure 42: Saving the delay lines of the filters

Project implantation

 62

The solution is to save the values of the delay lines after every filtering, so

they can be used as the filter initialisation of the next block, with that, a smooth

crossover from one to the next block is guaranteed and the settlement takes

only place during the first initialisation of the filter, where it does not bother. It

is important to notice that the delay lines of every filter have to be saved. This

means that i.e. for a 4 sub-band system 6 delay lines for the cutting path and 6

delay lines for reconstruction path have to be saved (when FIR filters are

used). Otherwise, the filter for the reconstruction will be initialised by the result

of the sub-band generating filters and other way around, which could result in

a similar kind of problem.

Performance

 63

6 Performance

6.1 Prove of scrambling

In chapter 3.1 we saw already some figures of the scrambling results. However this

was of course only an example with two frequencies to get you familiar with the

theoretic idea. In a real application there is of course, more than one frequency at a

time.

The spectrograms in the next figures visualise the result of the encoder for a signal

containing four single frequencies after each other.

 Test signal of:

 3,25 KHz

 2,2 KHz

 1,15 KHz

 1 KHz

Figure 43: Original test signal

 Signal scrambled with:

Figure 44: Scrambled Signal

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

 0 0 0 1
 0 0 1 0
 0 1 0 0
 1 0 0 0

xScramMatri

Performance

 64

 Signal decoded with:

Figure 45: Decoded signal

Note that the transformation of the scrambling matrix in this case is the same matrix

again. As mentioned before, the inversion of the signal is not the transposed identity

matrix like above, but furthermore the one in Figure 46.

 Signal scrambled with:

Even though speech signals are far more complex, the scrambling system works

quite the same way as the following figures prove for these matrixes.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

 0 0 1 0
 0 0 0 1
 1 0 0 0
 0 1 0 0

InvMatrix

Figure 46: Inverted Signal

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

 0 0 0 1
 0 0 1 0
 0 1 0 0
 1 0 0 0

rixDeScramMat

EncodeMatrix= DecodeMatrix=

 0 0 1 0 0 0 0 0

 0 0 0 1 0 0 0 0

 0 0 0 0 0 0 1 0

 0 1 0 0 0 0 0 0

 0 0 0 0 0 1 0 0

 1 0 0 0 0 0 0 0

 0 0 0 0 1 0 0 0

 0 0 0 0 0 0 0 1

 0 0 0 0 0 1 0 0

 0 0 0 1 0 0 0 0

 1 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0

 0 0 0 0 0 0 1 0

 0 0 0 0 1 0 0 0

 0 0 1 0 0 0 0 0

 0 0 0 0 0 0 0 1

Performance

 65

Figure 47: Spectrum and spectrogram of original speech signal

Figure 48: Spectrum and spectrogram of scrambled speech signal

Figure 49: Spectrum and spectrogram of decoded speech signal

Performance

 66

6.2 Time Performance

To determine that the application can perform in duplex and in real-time, two different

setups are possible. For both some soldering work has to be done to connect the

plugs of the sound card like it was shown in Figure 31 the other way which is easier

for development is shown in Figure 50.

Figure 50: Real-time test with one PC

Of course the system can also be tested with just the encoding signal to one output

channel and decoding to the other but for the final test the hardware should be set up

once proper.

In both cases the system performed the scrambling process with a recognisable

latency. This total latency is caused by:

- latency through hardware (very little),

- latency through overhead (OS, APIs etc),

- time for buffering one block,

- processing time.

Since there are little chances to improve on the hardware or on the OS side the other

parameters and techniques should be chosen with care, that’s one of the reasons for

PortAudio.

Performance

 67

The main points to balance and to optimise are the block size and the process itself.

The delay of the block size can be easily calculated through the sampling frequency

and the number of samples per block. Table 3 shows the time measurement of the

process for some block sizes.

1 Cannel Block Size
1 256

Sub-bands

time for
processing
one Block/
ms

time for processing
cut method for one
Block/ ms

4 8 3
8 10 4

16 29 12

1 Cannel Block Size

1 512

Sub-bands

time for
processing
one Block/
ms

time for processing
cut method for one
Block/ ms

4 50 20
8 70 29

16 100 40

1 Cannel Block Size

1 1024

Sub-bands

time for
processing
one Block/
ms

time for processing
cut method for one
Block/ ms

4 130 50
8 200 90

16 280 130

Table 3: Time measurement of scrambling process

The total delay is like mentioned before a combination of all three parameters and is

difficult to determine because it changes from platform to platform. But for a gross

calculation at 16 kHz sampling frequency can be said that:

Block size 256 samples: 25- 45 ms

Block size 512 samples: 80- 130 ms

Block size 1024 samples: 180- 350 ms

Performance

 68

where at a block size of 256 samples a danger of buffer overflows is present and at

1024 samples clearly a delay is recognisable. At 512 samples the delay is above the

hard real-time requirements but since we talk about soft real-time and the speaker

and listener are usually not directly next to each other the delay is acceptable.

6.3 Cryptanalysis

That the scrambling of the signal is not secure enough to guarantee voice security

can be intuitively guessed already from hearing the result of the scrambling or from

looking at Figure 48.

But also from the theoretical point of view this technique has some leakages which

make it vulnerable even for cipher-text-only attacks. The main problem is that the

intensity of the different frequencies stays the same even though they are shifted.

With some knowledge of the human voice like it is presented in chapter 1.2 it is easy

to recombine the sub-bands in the right way again. The histograms in Figure 51 show

that the signal with highest intensity, which must be the lowest frequency according

to chapter 1.2, is shifted only once.

Figure 51: Histogram of the original (l) and scrambled (r) signal

Performance

 69

Since the code never changes in our system the scrambling has to be considered as

broken after once being analysed right for the rest of that communication. The only

security this system can serve with is that the attacker might not be equipped with the

same system which is not a recommendable security level under the Kerkhoff’s

Principle3.

3
The security of an encryption algorithm should depend only on secret key(s), but not on the nondisclosure of the
algorithm. [3]

Conclusion

 70

7 Conclusion

As already mentioned in the introduction this system can not compete with modern

high technology encryption standards and it is not meant to. Nevertheless, it is

possible to achieve a voice scrambling system in real-time with only very basic digital

signal processing operations. The human voice is a complex signal and furthermore

is the human ear and brain very well trained to understand this signal and has even

the ability to cover some losses, which makes it very hard to adulterate a signal with

just scramble frequencies so it is not understandable anymore.

The direct access of the audio data on a computer platform is an often avoided field,

but it turns out that with the right tools it is an easy to release task. The PortAudio API

served an astonishing good service in terms of latency and easiness of use (after it

was successfully complied).

As said before and seen in the cryptanalysis chapter the system can not guarantee

voice security, but it is a very nice and practical example of the basics of signal

processing and audio programming and that for might find a usage in an educational

environment.

7.1 Future Work

There are quite some options to improve the system. At first it should be looked into

the current system, there could be a lot of improvements using a library for the filters

that could make them run faster and also perform better. With faster filters there

would maybe even be a chance to use quadrate mirror filter (QMF) or other better

filters that provide less losses. Furthermore, it would be interesting to have a GUI for

commanding the system. Another interesting question could be to measure the

performance through some other networks with voice coders.

To improve the voice security it would be an option to extend the project with other

kinds of scrambling techniques like they were mentioned in the introduction. A

floating split frequency or more than one split frequencies in different distances (in

upper frequencies bigger, in low ones smaller) would certainly bring some effort. But

also time domain scrambling or modulation of frequencies could be considered.

References

 71

8 References

Books/ Papers/ Scripts

[1] William R. Bennett, (Fellow IEEE); "Secret Telephony as a Historical Example of

Spread-Spectrum Communications,"

IEEE Transactions on Communications, Vol. COM-31, No. 1, January 1983,

(Parts also available at: http://www.nsa.gov/publications/publi00019.cfm#6)

[2] B Goldburg, Z Oawson, S Sridharan; “The Automated Cryptanalysis of Speech

Scramblers” Springer Verlag,1998

[3] Prof. Dr. Heiko Knospe; Script: „Cryptography“ Winter Term 2006/07; FH-

Cologne

[4] CES Communications Ltd; „INTRODUCTION TO VOICE SECURITY“

http://www.cescomm.co.nz/

[5] Steven W. Smith; “The Scientist and Engineer's Guide to Digital Signal

Processing” copyright ©1997-1998 by. www.DSPguide.com

[6] Roger J. Sutton; “Secure Communications”

Copyright 2002 by John Wiley & Sons, Ltd: ISBN: 9780471499046

[7] Pere Salvadó Lloveras; “Encriptació de veu per mescla de subbandes”

Escola Universitària d'Enginyeria Tècnica Industrial de Terrassa, UPC gen-2006

 http://hdl.handle.net/2099.1/3861

[8] Aitor Pérez Pellitero; “Mejora de un conversor de audio a MIDI e implementación

en tiempo real”

Escola Universitària d'Enginyeria Tècnica Industrial de Terrassa, UPC jun-2007

http://hdl.handle.net/2099.1/4368

References

 72

URLs

[9] http://www.nsa.gov/publications/publi00019.cfm#N4

[10] http://en.wikipedia.org/wiki/Voice_frequency

[11] http://www.nsa.gov/public/publi00007.cfm

[12] http://en.wikipedia.org/wiki/SIGSALY

[13] http://en.wikipedia.org/wiki/Scrambler

[14] http://seussbeta.tripod.com/crypt.html

[15] http://en.wikipedia.org/wiki/Vocoder

[16] http://ccrma.stanford.edu/courses/422/projects/WaveFormat

[17] http://www.staudio.de/kb/english/drivers/

[18] http://msdn2.microsoft.com/en-us/library/ms678518(VS.85).aspx

[19] http://clam.iua.upf.edu/

[20] http://www.openal.org/

[21] http://www.portaudio.com/
[22] http://en.wikipedia.org/wiki/Duplex_%28telecommunications%29

[23] http://en.wikipedia.org/wiki/Real_time

List of figures

 73

List of figures

Figure 1: Radio Network with unsecured sectors ... 8

Figure 2: Sigsaly exhibit at the National Cryptology Museum. [9]............................. 10

Figure 3: Simplified overview of the Sigsaly [9] .. 11

Figure 4: Frequency distribution of the human voice .. 13

Figure 5: Spectrogram of vowels and consonants.. 13

Figure 6: Spectrogram of a human voice.. 14

Figure 7: Base Band scrambling with one split point [14] ... 16

Figure 8: Inversion of the divided signal out of Figure 7 [14] 18

Figure 9: Overview of Data Encryption Standard [3]... 20

Figure 10: Basic System Setup .. 23

Figure 11: Architecture of a normal computer... 23

Figure 12: Overview of the voice scrambling system.. 25

Figure 13: Spectrogram and Frequency plot .. 27

Figure 14: Overview of the frequency separation process.. 28

Figure 15: Low-pass filter block .. 28

Figure 16: Low-pass/ High-pass filter characteristic ... 29

Figure 17: Discrete- and frequency plot of filtered signal.. 29

Figure 18: Down-sample block ... 30

Figure 19: Discrete- and frequency plot of down-sampled signal 30

Figure 20: Scrambling block ... 32

Figure 21: Overview of the frequency reassembling process 33

Figure 22: Up-sample block.. 33

Figure 23: Discrete- and frequency plot of up-sampled signal.................................. 34

Figure 24: High-pass filter block ... 34

List of figures

 74

Figure 25: Discrete- and frequency plot of filtered signal.. 35

Figure 26: Sum block.. 35

Figure 27: Encoder/ Decoder.. 36

Figure 28: The canonical WAVE file format [16] ... 38

Figure 29: Model of MS Windows audio APIs [17].. 39

Figure 30: Section of the source code .. 46

Figure 31: Setup for duplex communication with two PCs.. 47

Figure 32: Use of PortAudio ... 48

Figure 33: Abstract PFC of main loop... 49

Figure 34: PFC of the manipulation method ... 52

Figure 35: PFC of the cut method... 54

Figure 36: General features of a filter [5] .. 56

Figure 37: Plot of FIR filter.. 57

Figure 38: Test signal filtered with 4 sub-bands and FIR filter 58

Figure 39: Filter plot of IIR filter .. 59

Figure 40: Test signal filtered with 4 sub-bands and IIR filter 60

Figure 41: Settlement of the filters.. 61

Figure 42: Saving the delay lines of the filters .. 61

Figure 43: Original test signal ... 63

Figure 44: Scrambled Signal .. 63

Figure 45: Decoded signal.. 64

Figure 47: Spectrum and spectrogram of original speech signal 65

Figure 48: Spectrum and spectrogram of scrambled speech signal 65

Figure 49: Spectrum and spectrogram of decoded speech signal............................ 65

Figure 50: Real-time test with one PC .. 66

Figure 51: Histogram of the original (l) and scrambled (r) signal 68

List of figures

 75

List of tables

Table 1: Split points of popular Manufacturers [14] .. 17

Table 2: Comparison of software APIs ... 45

Table 3: Time measurement of scrambling process ... 67

Appendix

 76

Appendix A

Appendix

 77

Appendix B

GNU Licence

PortAudio is free to use software where even the source code is free and users are

allowed to change the code. To ensure that it is used in the way the primary

developer wanted it, it is published under the

“The GNU General Public License (GNU GPL or simply GPL) is a widely

used free software license, originally written by Richard Stallman for the GNU

project. It is the license used by the Linux kernel. The GPL is the most popular

and well-known example of the type of strong copy left license that requires

derived works to be available under the same copy left. Under this philosophy,

the GPL is said to grant the recipients of a computer program the rights of the

free software definition and uses copy left to ensure the freedoms are

preserved, even when the work is changed or added to. This is in distinction to

permissive free software licences, of which the BSD licenses are the standard

examples.

The GNU Lesser General Public License (LGPL) is a modified, more

permissive, version of the GPL, intended for some software libraries. There is

also a GNU Free Documentation License, which was originally intended for

use with documentation for GNU software, but has also been adopted for

other uses, such as the Wikipedia project.”

 [http://en.wikipedia.org/wiki/GNU_General_Public_License]

